Optimization And Sampling Without Derivatives

Andrew Stuart

Computing and Mathematical Sciences California Institute of Technology

NSF, ONR, Allen Philanthropies, Mission Control for Earth, Schmidt Futures

CSE Seminar MIT

December 9th 2021

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Overview

Filtering

Filtering and Mean Field Dynamics

Filtering and Ensemble Kalman

Weather Forecasting

Filtering and Inverse Problems

Continuous Time Limit

Electrical Impedence Tomography

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Closing

Main Ideas

Ensemble Kalman: Derivative-Free Optimization and Sampling

(ロ)、

- Ensemble Kalman: Filtering and Inverse Problems
- Insights From: Mean Field Derivation
- Insights From: Continuous Time Limits
- Applications: Weather Forecasting, Medical Imaging

Main Ideas

Ensemble Kalman: Derivative-Free Optimization and Sampling

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Ensemble Kalman: Filtering and Inverse Problems
- Insights From: Mean Field Derivation
- Insights From: Continuous Time Limits
- Applications: Weather Forecasting, Medical Imaging

Alternative Mean-Field Approaches (Consensus) Carrillo et al [7], [5]

Collaborators

- Alex Beskos (UCL)
- Edoardo Calvello (Caltech)
- Alfredo Garbuno-Inigo (Instituto Tecnológico Autónomo de México)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Franca Hoffmann (Bonn)
- Marco Iglesias (Nottingham)
- Ajay Jasra (KAUST)
- Kody Law (Manchester)
- Wuchen Li (University of South Carolina)
- Sebastian Reich (Potsdam)
- Claudia Schillings (Mannheim)

Filtering

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

- Practical Considerations Doucet et al [14]
- Continuous Time Bain and Crisan [2]

Hidden Markov Model

Dynamics and Data

Dynamics Model: $v_{n+1}^{\dagger} = \Psi(v_n^{\dagger}) + \xi_n$, $n \in \mathbb{Z}^+$ Data Model: $y_{n+1}^{\dagger} = h(v_{n+1}^{\dagger}) + \eta_{n+1}$, $n \in \mathbb{Z}^+$ Probabilistic Structure: $v_0^{\dagger} \sim N(m_0, C_0)$, $\xi_n \sim N(0, \Sigma)$, $\eta_n \sim N(0, \Gamma)$ Probabilistic Structure: $v_0^{\dagger} \perp \{\xi_n\} \perp \{\eta_n\}$ independent

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Hidden Markov Model

Probabilistic Picture

Dynamics Model (Prediction): $\hat{\mu}_{n+1} = P\mu_n$, Data Model (Bayes): $\mu_{n+1} = L_n \hat{\mu}_{n+1}$,

$$Y_n = \{y_1^{\dagger}, \ldots, y_n^{\dagger}\}; \quad v_n^{\dagger} | Y_n \sim \mu_n.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Maps On Probability Measures

True Model:
$$\mu_{n+1} = L_n P \mu_n$$
,
Particle Approximation: $\mu_{n+1}^J = L_n S^J P \mu_n^J$,

$$S^{J}\pi = \frac{1}{J} \sum_{j=1}^{J} \delta_{u^{(j)}}, \quad u^{(j)} \sim \pi, \quad \text{i.i.d.}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Theorem Rebeschini and Van Handel [33]

Assume h is bounded. Then there is C(N) > 0 such that, for all $1 \le n \le N$,

$$d(\mu_n,\mu_n^J) \leq C(N) rac{1}{\sqrt{J}}.$$

$$d(\pi,\pi') = \sup_{|f|_{\infty} \leq 1} \left(\mathbb{E}\Big[\big(\pi(f) - \pi'(f)\big)^2 \Big] \Big)^{1/2},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem Rebeschini and Van Handel [33]

Assume h is bounded. Then there is C(N) > 0 such that, for all $1 \le n \le N$,

$$d(\mu_n,\mu_n^J)\leq C(N)rac{1}{\sqrt{J}}.$$

$$d(\pi,\pi') = \sup_{|f|_{\infty} \leq 1} \left(\mathbb{E}\Big[\big(\pi(f) - \pi'(f)\big)^2 \Big] \Big)^{1/2},$$

C(N) depends badly on dimension: Weight Collapse In High Dimension

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Filtering and Mean Field Dynamics

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Discrete Time Daum et al [12]
- Continuous Time Crisan and Xiong [11]
- Continuous Time Yang et al [41]
- Optimal Transport Reich [34]
- Transport Spantini et al [38]

Prediction and Transport – Nonlinear Markov Process

 $\begin{array}{ll} \text{Dynamics Prediction:} & \widehat{v}_{n+1} = \Psi(v_n) + \xi_n, \\ \text{Data Prediction:} & \widehat{y}_{n+1} = h(\widehat{v}_{n+1}) + \eta_{n+1}, \\ \text{Perfect Transport:} & v_{n+1} = T^S(\widehat{v}_{n+1}, \widehat{y}_{n+1}; \nu_{n+1}, \textbf{y}_{n+1}^{\dagger}). \end{array}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Prediction and Transport – Nonlinear Markov Process

 $\begin{array}{ll} \text{Dynamics Prediction:} & \widehat{v}_{n+1} = \Psi(v_n) + \xi_n, \\ & \text{Data Prediction:} & \widehat{y}_{n+1} = h(\widehat{v}_{n+1}) + \eta_{n+1}, \\ & \text{Perfect Transport:} & v_{n+1} = T^S(\widehat{v}_{n+1}, \widehat{y}_{n+1}; \nu_{n+1}, \textbf{y}_{n+1}^{\dagger}). \end{array}$

Transport Chosen To Effect Conditioning

Assumption:
$$v_n \sim \mu_n$$
 $(v_n^{\intercal} | Y_n)$ Dynamics and Data: $(\widehat{v}_{n+1}, \widehat{y}_{n+1}) \sim \nu_{n+1}$ Conditioning: $v_{n+1} \sim \mu_{n+1}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Transport-based Inversion and Conditioning Marzouk et al [31], [27]

Particle Approximation – Linear Markov Process

$$\begin{split} \widehat{v}_{n+1}^{(j)} &= \Psi(v_n^{(j)})) + \xi_n^{(j)}, \\ \widehat{y}_{n+1}^{(j)} &= h(\widehat{v}_{n+1}^{(j)})) + \eta_{n+1}^{(j)}, \\ v_{n+1}^{(j)} &= T^S(\widehat{v}_{n+1}^{(j)}, \widehat{y}_{n+1}^{(j)}; \nu_{n+1}^J, y_{n+1}^\dagger), \\ \nu_{n+1}^J &= \frac{1}{J} \sum_{j=1}^J \delta_{(\widehat{v}_{n+1}^{(j)}, \widehat{y}_{n+1}^{(j)})} \end{split}$$

$$(\mathbf{v}_n^{\dagger}|\mathbf{Y}_n) \qquad \mu_n \approx \mu_n^J = \frac{1}{J} \sum_{j=1}^J \delta_{\mathbf{v}_n^{(j)}}$$

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

Particle Approximation – Linear Markov Process

$$\begin{split} & \widehat{v}_{n+1}^{(j)} = \Psi(v_n^{(j)})) + \xi_n^{(j)}, \\ & \widehat{y}_{n+1}^{(j)} = h(\widehat{v}_{n+1}^{(j)})) + \eta_{n+1}^{(j)}, \\ & v_{n+1}^{(j)} = T^S(\widehat{v}_{n+1}^{(j)}, \widehat{y}_{n+1}^{(j)}; \nu_{n+1}^J, y_{n+1}^\dagger), \\ & \nu_{n+1}^J = \frac{1}{J} \sum_{j=1}^J \delta_{(\widehat{v}_{n+1}^{(j)}, \widehat{y}_{n+1}^{(j)})} \end{split}$$

$$(\mathbf{v}_n^{\dagger}|Y_n)$$
 $\mu_n \approx \mu_n^J = \frac{1}{J} \sum_{j=1}^J \delta_{\mathbf{v}_n^{(j)}}$

Equal Weights: No Collapse

Particle Approximation – Linear Markov Process

$$\begin{split} & \widehat{v}_{n+1}^{(j)} = \Psi(v_n^{(j)})) + \xi_n^{(j)}, \\ & \widehat{y}_{n+1}^{(j)} = h(\widehat{v}_{n+1}^{(j)})) + \eta_{n+1}^{(j)}, \\ & v_{n+1}^{(j)} = T^S(\widehat{v}_{n+1}^{(j)}, \widehat{y}_{n+1}^{(j)}; \nu_{n+1}^J, y_{n+1}^\dagger), \\ & \nu_{n+1}^J = \frac{1}{J} \sum_{j=1}^J \delta_{(\widehat{v}_{n+1}^{(j)}, \widehat{y}_{n+1}^{(j)})} \end{split}$$

$$(\mathbf{v}_n^{\dagger}|Y_n)$$
 $\mu_n \approx \mu_n^J = \frac{1}{J} \sum_{j=1}^J \delta_{\mathbf{v}_n^{(j)}}$

Equal Weights: No Collapse

But: Computation of T^{S} Prohibitive

Filtering and Ensemble Kalman

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

- Original Kalman Paper Kalman [26]
- Original Ensemble Kalman Paper Evensen [19]
- Link To Transport Reich [34]

Mean Field Kalman Dynamics

Prediction and Kalman Transport – Nonlinear Markov Process

Dynamics Prediction: $\hat{v}_{n+1} = \Psi(v_n) + \xi_n$, Data Prediction: $\hat{y}_{n+1} = h(\hat{v}_{n+1}) + \eta_{n+1}$,

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Mean Field Kalman Dynamics

Prediction and Kalman Transport – Nonlinear Markov Process

Dynamics Prediction: $\hat{v}_{n+1} = \Psi(v_n) + \xi_n$, Data Prediction: $\hat{y}_{n+1} = h(\hat{v}_{n+1}) + \eta_{n+1}$,

Transport $\mathbb{E} := \mathbb{E}^{\nu_{n+1}}$

$$\begin{aligned} & \text{Transport:} \quad v_{n+1} = \widehat{v}_{n+1} + \widehat{C}_{n+1}^{vy} (\widehat{C}_{n+1}^{yy})^{-1} (y_{n+1}^{\dagger} - \widehat{y}_{n+1})., \\ & \text{Data Covariance:} \quad \widehat{C}_{n+1}^{yy} = \mathbb{E}\Big((\widehat{y}_{n+1} - \mathbb{E}\widehat{y}_{n+1}) \otimes (\widehat{y}_{n+1} - \mathbb{E}\widehat{y}_{n+1}) \Big), \\ & \text{Cross Covariance:} \quad \widehat{C}_{n+1}^{vy} = \mathbb{E}\Big((\widehat{v}_{n+1} - \mathbb{E}\widehat{v}_{n+1}) \otimes (\widehat{y}_{n+1} - \mathbb{E}\widehat{y}_{n+1}) \Big). \end{aligned}$$

Perfect Conditioning Via Transport For Gaussian ν_{n+1} .

Mean Field Kalman Dynamics

Particle Approximation – Linear Markov Process

$$\begin{split} \widehat{v}_{n+1}^{(j)} &= \Psi(v_n^{(j)}) + \xi_n^{(j)}, \\ \widehat{y}_{n+1}^{(j)} &= h(\widehat{v}_{n+1}^{(j)}) + \eta_{n+1}^{(j)}, \\ \nu_{n+1}^J &= \frac{1}{J} \sum_{j=1}^J \delta_{(\widehat{v}_{n+1}^{(j)}, \widehat{y}_{n+1}^{(j)})} \end{split}$$

Empirical Covariances; $\mathbb{E} := \mathbb{E}^{\nu_{n+1}^J}$

$$\begin{aligned} & \mathsf{Kalman Transport:} \quad \mathsf{v}_{n+1}^{(j)} = \widehat{\mathsf{v}}_{n+1}^{(j)} + \widehat{C}_{n+1}^{\mathsf{vy}} (\widehat{C}_{n+1}^{\mathsf{yy}})^{-1} (\mathsf{y}_{n+1}^{\dagger} - \widehat{y}_{n+1}^{(j)}), \\ & \mathsf{Data Covariance:} \quad \widehat{C}_{n+1}^{\mathsf{yy}} = \mathbb{E}\Big((\widehat{y}_{n+1} - \mathbb{E}\widehat{y}_{n+1}) \otimes (\widehat{y}_{n+1} - \mathbb{E}\widehat{y}_{n+1}) \Big), \\ & \mathsf{Cross Covariance:} \quad \widehat{C}_{n+1}^{\mathsf{vy}} = \mathbb{E}\Big((\widehat{v}_{n+1} - \mathbb{E}\widehat{v}_{n+1}) \otimes (\widehat{y}_{n+1} - \mathbb{E}\widehat{y}_{n+1}) \Big). \end{aligned}$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - 釣��

Theorem Le Gland et al [30]

Assume Ψ , *h* are linear. Then there is C(N) > 0 such that, for all $1 \le n \le N$,

$$d_{\phi}(\mu_n,\mu_n^J) \leq C(N) rac{1}{\sqrt{J}}.$$

$$\mu_n \approx \mu_n^J = \frac{1}{J} \sum_{j=1}^J \delta_{\widehat{v}_n^{(j)}}$$

For locally Lipschitz ϕ , with polynomial growth:

$$d_{\phi}(\pi,\pi') = \left(\mathbb{E}\Big[ig(\pi(f)-\pi'(f)ig)^{p}\Big]ig)^{1/p},
ight.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Weather Forecasting

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Evaluation of Filters Law and AMS [29]
- Filters in Geophysical Applications van Leeuwen et al [40]

3DVAR (\equiv Averaged ExKF) Overcomes Butterfly Effect

・ロト ・ 同ト ・ ヨト ・ ヨト

∃ <2 <</p>

ExKF Jazwinski [23] 3DVAR Law et al [28]

Impact of EnKF over 3DVAR

courtesy Roland Potthast(DWD)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Filtering and Inverse Problems

- Optimization Approach Engl et al [17]
- Bayesian Approach Kaipio and Somersalo [25]
- Bayesian Approach (Banach Space) AMS [39]
- Ensemble Sampling and Optimization Reich [34]
- Ensemble Sampling Chen and Oliver [9]
- Ensemble Sampling Emerick and Reynolds [16]
- Ensemble Optimization Iglesias et al [22]
- Ensemble Optimization With Constraints Albers et al [1]
- Analysis of Ensemble Sampling Ernst et al [18]

Inverse Problem

Problem Statement

Find *u* from *y* where $G : U \mapsto Y$, $\eta \sim N(0, \Gamma)$ is noise and

 $y = \mathsf{G}(\boldsymbol{u}) + \eta.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Inverse Problem

Bayesian Approach

Objective
$$\Phi_0(u) = \frac{1}{2}|y - G(u)|_{\Gamma}^2$$
,
Prior $\mu_0(du)$,
Posterior $\mu(du) = \frac{1}{Z} \exp(-\Phi_0(u))\mu_0(du)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Inverse Problem

Sequential Monte Carlo – SMC

Sequential Updates 1
$$\mu_n(du) = \frac{1}{Z_n} \exp(-nh\Phi_0(u))\mu_0(du),$$

Sequential Updates 2 $\mu_{n+1}(du) = \frac{Z_n}{Z_{n+1}} \exp(-h\Phi_0(u))\mu_n(du),$
Posterior $\mu(du) = \mu_N(du), \quad Nh = 1.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Del Moral et al [13] Beskos et al [4] Chopin and Papaspiliopoulos [10]

Hidden Markov Model

Dynamics and Data

 $\begin{array}{ll} \text{Dynamics Model:} & v_{n+1}^{\dagger} = v_n^{\dagger}, & n \in \mathbb{Z}^+ \\ \text{Data Model:} & y_{n+1}^{\dagger} = G(v_{n+1}^{\dagger}) + \eta_{n+1}, & n \in \mathbb{Z}^+ \\ \text{Probabilistic Structure:} & v_0^{\dagger} \sim \mu_0, & \eta_n \sim N(0, \frac{1}{h}\Gamma) \\ \text{Probabilistic Structure:} & v_0^{\dagger} \perp \{\eta_n\} \text{ independent} \end{array}$

 $v_n^{\dagger}|Y_n \sim \mu_n$

 $|v_N^{\dagger}|Y_N \sim \mu$

Continuous Time Limit

$Nh = 1, \quad h \to 0; \quad nh = t.$ $\mu_n \approx \mu(t), \quad \mathbf{v}_n \approx u(t).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Optimization Schillings and AMS [37]

Sampling Garbuno-Inigo et al [20]

Ensemble Kalman Inversion (EKI)

Continuous Time Formulation $\mathbb{E}=\mathbb{E}^{u'\sim \mu}$ Schillings and AMS [37]

$$\begin{split} \dot{\boldsymbol{u}} &= -\mathbb{E}\Big(\Big\langle \mathsf{G}(\boldsymbol{u}') - \bar{\mathsf{G}}, \mathsf{G}(\boldsymbol{u}) - \boldsymbol{y} + \sqrt{\Gamma'} \dot{\boldsymbol{B}} \Big\rangle_{\Gamma} \left(\boldsymbol{u}' - \bar{\boldsymbol{u}}\right) \Big), \quad \boldsymbol{u}(0) \sim \mu_0 \\ \bar{\boldsymbol{u}} &= \mathbb{E} \boldsymbol{u}' \quad \bar{\mathsf{G}} = \mathbb{E}(\boldsymbol{u}'). \end{split}$$

Theorem Reich [34] Garbuno-Inigo et al [20]

Let G be linear and $\Gamma' = \Gamma$. Then $\mu|_{t=1} = \mu$, solution of the Bayesian inverse problem.

ightarrow Γ' = Γ is continuous limit of ensemble Kalman SMC.

Connection to Optimization – Linear Approximation

Linear Approximation

$$(G(\mathbf{u}') - \overline{G}) \approx DG(\mathbf{u})(\mathbf{u}' - \overline{\mathbf{u}}).$$

EKI As Self-Preconditioned Gradient Descent See [34], [37]

$$egin{aligned} \dot{oldsymbol{u}} &= -C(\mu)
abla \Phi_0(oldsymbol{u}), \ C(\mu) &= \mathbb{E}\Big((oldsymbol{u}' - oldsymbol{ar{u}}) \otimes (oldsymbol{u}' - oldsymbol{ar{u}})\Big), \ oldsymbol{u} &\sim \mu, \quad \Phi_0(oldsymbol{u}) &= rac{1}{2}|y - G(oldsymbol{u})|_{\Gamma}^2 \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Ensemble Kalman Sampling (EKS)

Continuous Time Formulation: Put EKI in a heat bath

$$\begin{split} \dot{\boldsymbol{u}} &= -\mathbb{E}\Big(\Big\langle \mathsf{G}(\boldsymbol{u}') - \bar{\mathsf{G}}, \mathsf{G}(\boldsymbol{u}) - \boldsymbol{y} + \sqrt{\Gamma'}\dot{\boldsymbol{B}}\Big\rangle_{\Gamma} \left(\boldsymbol{u}' - \bar{\boldsymbol{u}}\right)\Big) \\ &- C(\boldsymbol{\mu})\boldsymbol{\Sigma}^{-1}\boldsymbol{u} + \sqrt{2C(\boldsymbol{\mu})}\dot{\boldsymbol{W}}, \\ C(\boldsymbol{\mu}) &= \mathbb{E}\Big(\left(\boldsymbol{u}' - \bar{\boldsymbol{u}}\right) \otimes \left(\boldsymbol{u}' - \bar{\boldsymbol{u}}\right)\Big). \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Ensemble Kalman Sampling – Linear Approximation

Linear Approximation

$$\begin{split} \big(\mathsf{G}(\boldsymbol{u}')-\bar{\mathsf{G}}\big) &\approx D\mathsf{G}(\boldsymbol{u})(\boldsymbol{u}'-\bar{\boldsymbol{u}}),\\ \mu_0 &= \mathsf{N}(0,\Sigma). \end{split}$$

EKS As Self-Preconditioned Langevin Equation See [20], [21]

$$\begin{split} \dot{\boldsymbol{u}} &= -C(\boldsymbol{\mu}) \nabla \Phi(\boldsymbol{u}) + \sqrt{2C(\boldsymbol{\mu})} \dot{\boldsymbol{W}} \\ C(\boldsymbol{\mu}) &= \mathbb{E}\Big(\big(\boldsymbol{u}' - \bar{\boldsymbol{u}}\big) \otimes \big(\boldsymbol{u}' - \bar{\boldsymbol{u}}\big) \Big), \\ \Phi(\boldsymbol{u}) &= \frac{1}{2} \big| \boldsymbol{y} - G(\boldsymbol{u}) \big|_{\Gamma}^{2} + \frac{1}{2} \big| \boldsymbol{u} \big|_{\Sigma}^{2}, \\ &= \Phi_{0}(\boldsymbol{u}) + \frac{1}{2} \big| \boldsymbol{u} \big|_{\Sigma}^{2}. \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Nonlinear Nonlocal Fokker-Planck Equation

Theorem Garbuno-Inigo et al [20]

Measure μ has density ρ solving a nonlinear, nonlocal Fokker-Planck equation:

$$\partial_t \rho = \nabla \cdot \left(\rho \, \mathcal{C}(\rho) \nabla \frac{\delta \mathcal{E}}{\delta \rho} \right) \ , \ \mathcal{E}(\rho) = \int \left(\Phi + \ln \rho \right) \rho \, \mathrm{d} u.$$

Gradient flow in \mathcal{P}_+ (probability measures) w.r.t. metric $g_{\rho,C}$ (on the tangent space):

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t}\mathcal{E}(\rho) &= -\int \rho \left| \mathcal{C}(\rho)^{\frac{1}{2}} \nabla (\Phi + \ln \rho) \right|^2 \mathrm{d}\boldsymbol{u} \\ &= -\mathbf{g}_{\rho,\mathcal{C}}(\partial_t \rho, \partial_t \rho). \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Builds on work of: Otto: [24, 32]; Cotter and Reich: [35]

Nonlinear Nonlocal Fokker-Planck Equation

Theorem Garbuno-Inigo et al [20]

Let G be linear and $\mu(0)$ be Gaussian. Then $\mu(t) \rightarrow \mu$ in L^1 (μ solution of the Bayesian inverse problem) at universal rate $\exp(-t)$.

Extension to non-Gaussian initialization: Carrillo and Vaes [6]

Electrical Impedence Tomography

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Bayesian Formulation Dunlop and AMS [15]
- Ensemble Kalman Approach Chada et al [8]

Electrical Impedance Tomography (EIT) 1

Forward Problem

Given $(\kappa, I) \in L^{\infty}(D; \mathbb{R}^+) \times \mathbb{R}^m$ find $(\nu, V) \in H^1(D) \times \mathbb{R}^m$:

$$\begin{aligned} -\nabla \cdot (\kappa \nabla \nu) &= 0 \quad \in \quad D, \\ \nu + z_{\ell} \kappa \nabla \nu \cdot n &= V_{\ell} \quad \in \quad e_{\ell}, \quad \ell = 1, \dots, m, \\ \nabla \nu \cdot n &= 0 \quad \in \quad \partial D \setminus \cup_{\ell=1}^{m} e_{\ell}, \\ \int \kappa \nabla \nu \cdot n \, ds &= I_{\ell} \quad \in \quad e_{\ell}, \quad \ell = 1, \dots, m. \end{aligned}$$

Ohm's Law: $V = R(\kappa) \times I$.

Inverse Problem

Set $\kappa = \exp(u)$. Given a set of K noisy measurements of voltage V(k) from currents I(k), and $G_k(u) = R(\exp(u)) \times I(k)$, find u from y where:

$$y(k) = G_k(\boldsymbol{u}) + \eta, \quad \eta \sim N(0, \gamma^2), \quad k = 1, \dots, K.$$

EIT 2

Figure: True Conductivity.

Parameterization

- Continuous level set function.
- Lengthscale of level set function.
- Smoothness of level set function.

EIT 3

Figure: Five succesive iterations: level set function.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

EIT 4

Figure: Five succesive iterations: thresholded level set function.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Closing

Conclusions: Ensemble Kalman Methodologies

- Kalman Filtering: 1960, Rudolph Kalman.
- Ensemble Kalman Filtering: 1994, Geir Evensen.
- Applications in numerous fields:
 - Weather forecasting;
 - Oceanography;
 - Hydrology, Subsurface flow;
 - Medical imaging, Machine learning · · · .
- Developing as a general methodology for state estimation.
- Developing as a general methodology for inverse problems:
 - Gradient flow structure: parameter space;
 - Gradient flow structure: probability space.
- Connections to Wasserstein gradient flows, optimal transport.
- Many open mathematical questions.

References I

- D. J. Albers, P.-A. Blancquart, M. E. Levine, E. E. Seylabi, and A. Stuart. Ensemble Kalman methods with constraints. *Inverse Problems*, 35(9):095007, 2019.
- [2] A. Bain and D. Crisan. Fundamentals of stochastic filtering, volume 60. Springer Science & Business Media, 2008.
- J.-D. Benamou and Y. Brenier. A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. *Numerische Mathematik*, 84(3):375–393, 2000.
- [4] A. Beskos, A. Jasra, E. A. Muzaffer, and A. M. Stuart. Sequential Monte Carlo methods for bayesian elliptic inverse problems. *Statistics and Computing*, 25(4):727–737, 2015.
- [5] J. Carrillo, F. Hoffmann, A. Stuart, and U. Vaes. Consensus based sampling. arXiv preprint arXiv:2106.02519, 2021.
- J. Carrillo and U. Vaes. Wasserstein stability estimates for covariance-preconditioned fokker-planck equations. Nonlinearity, 34(4):2275, 2021.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- [7] J. A. Carrillo, Y.-P. Choi, C. Totzeck, and O. Tse. An analytical framework for consensus-based global optimization method. *Mathematical Models and Methods in Applied Sciences*, 28(06):1037–1066, 2018.
- [8] N. K. Chada, M. A. Iglesias, L. Roininen, and A. M. Stuart. Parameterizations for ensemble Kalman inversion. *Inverse Problems*, 34(5):055009, 2018.

References II

- Y. Chen and D. S. Oliver. Ensemble randomized maximum likelihood method as an iterative ensemble smoother. *Mathematical Geosciences*, 44(1):1–26, 2012.
- [10] N. Chopin, O. Papaspiliopoulos, et al. An introduction to sequential Monte Carlo, volume 4. Springer, 2020.
- [11] D. Crisan and J. Xiong. Approximate mckean–vlasov representations for a class of SPDEs. Stochastics An International Journal of Probability and Stochastics Processes, 82(1):53–68, 2010.
- [12] F. Daum, J. Huang, and A. Noushin. Exact particle flow for nonlinear filters. In Signal processing, sensor fusion, and target recognition XIX, volume 7697, page 769704. International society for optics and photonics, 2010.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- [13] P. Del Moral, A. Doucet, and A. Jasra. Sequential monte carlo samplers. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(3):411–436, 2006.
- [14] A. Doucet, N. De Freitas, N. J. Gordon, et al. Sequential Monte Carlo methods in practice, volume 1. Springer, 2001.
- [15] M. M. Dunlop and A. M. Stuart. The bayesian formulation of EIT: analysis and algorithms. *Inverse Problems and Imaging*, 10(4):1007–1036, 2016.
- [16] A. A. Emerick and A. C. Reynolds. Ensemble smoother with multiple data assimilation. Computers & Geosciences, 55:3–15, 2013.

References III

- [17] H. W. Engl, M. Hanke, and A. Neubauer. *Regularization of inverse problems*, volume 375. Springer Science & Business Media, 1996.
- [18] O. G. Ernst, B. Sprungk, and H.-J. Starkloff. Analysis of the ensemble and polynomial chaos Kalman filters in bayesian inverse problems. SIAM/ASA Journal on Uncertainty Quantification, 3(1):823–851, 2015.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 G. Evensen.
 Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics.

Journal of Geophysical Research: Oceans, 99(C5):10143-10162, 1994.

- [20] A. Garbuno-Inigo, F. Hoffmann, W. Li, and A. M. Stuart. Interacting Langevin diffusions: Gradient structure and ensemble Kalman sampler. *SIAM Journal on Applied Dynamical Systems*, 19(1):412–441, 2020.
- [21] A. Garbuno-Inigo, N. Nüsken, and S. Reich. Affine invariant interacting Langevin dynamics for bayesian inference. SIAM Journal on Applied Dynamical Systems, 19(3):1633–1658, 2020.
- [22] M. A. Iglesias, K. J. Law, and A. M. Stuart. Ensemble Kalman methods for inverse problems. *Inverse Problems*, 29(4):045001, 2013.
- [23] A. Jazwinski. Stochastic Processes and Filtering Theory. Academic Press, 1970.
- [24] R. Jordan, D. Kinderlehrer, and F. Otto. The variational formulation of the fokker-planck equation. SIAM journal on mathematical analysis, 29(1):1–17, 1998.

References IV

- [25] J. Kaipio and E. Somersalo. Statistical and computational inverse problems, volume 160. Springer Science & Business Media, 2006.
- [26] R. Kalman. A new approach to linear filtering and prediction problems. *Journal of Basic Engineering*, 82:35–45, 1960.
- [27] N. Kovachki, R. Baptista, B. Hosseini, and Y. Marzouk. Conditional sampling with monotone gans. arXiv preprint arXiv:2006.06755, 2020.
- [28] K. Law, A. Stuart, and K. Zygalakis. Data assimilation. Cham, Switzerland: Springer, 2015.
- [29] K. J. Law and A. M. Stuart. Evaluating data assimilation algorithms. Monthly Weather Review, 140(11):3757-3782, 2012.
- [30] F. Le Gland, V. Monbet, and V.-D. Tran. Large sample asymptotics for the ensemble Kalman filter. 2009.
- [31] Y. Marzouk, T. Moselhy, M. Parno, and A. Spantini. Sampling via measure transport: An introduction. Handbook of uncertainty quantification, pages 1–41, 2016.
- [32] F. Otto.

The geometry of dissipative evolution equations: the porous medium equation. 2001.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

References V

- [33] P. Rebeschini and R. Van Handel. Can local particle filters beat the curse of dimensionality? The Annals of Applied Probability, 25(5):2809–2866, 2015.
- [34] S. Reich. A dynamical systems framework for intermittent data assimilation. BIT Numerical Mathematics, 51(1):235–249, 2011.
- [35] S. Reich and C. Cotter. Probabilistic forecasting and Bayesian data assimilation. Cambridge University Press, 2015.
- [36] S. Reich and C. J. Cotter. Ensemble filter techniques for intermittent data assimilation. Large Scale Inverse Problems. Computational Methods and Applications in the Earth Sciences, 13:91–134, 2013.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- [37] C. Schillings and A. M. Stuart. Analysis of the ensemble Kalman filter for inverse problems. SIAM Journal on Numerical Analysis, 55(3):1264–1290, 2017.
- [38] A. Spantini, R. Baptista, and Y. Marzouk. Coupling techniques for nonlinear ensemble filtering. arXiv preprint arXiv:1907.00389, 2019.
- [39] A. M. Stuart. Inverse problems: a bayesian perspective. Acta numerica, 19:451–559, 2010.
- [40] P. J. Van Leeuwen, H. R. Künsch, L. Nerger, R. Potthast, and S. Reich. Particle filters for high-dimensional geoscience applications: A review. *Quarterly Journal of the Royal Meteorological Society*, 145(723):2335–2365, 2019.

References VI

[41] T. Yang, P. G. Mehta, and S. P. Meyn. Feedback particle filter. IEEE transactions on Automatic control, 58(10):2465–2480, 2013.

Metric For Gradient Structure

Otto: [24, 32], Cotter and Reich: [35]

Kalman-Wasserstein Metric Tensor (Otto [36], [20])

Define $g_{
ho, \mathcal{C}}$: $T_{
ho}\mathcal{P}_+ imes T_{
ho}\mathcal{P}_+ o \mathbb{R}$ by

$$g_{
ho,\mathcal{C}}(\sigma_1,\sigma_2):=\int_\Omega \left\langle
abla \psi_1\,,\,\mathcal{C}(
ho)
abla \psi_2
ight
angle\,
ho\,\mathrm{d} x,$$

where $\sigma_i = -\nabla \cdot (\rho C(\rho) \nabla \psi_i) \in T_{\rho} \mathcal{P}_+$ for i = 1, 2.

Kalman-Wasserstein Metric (Benamou-Brenier [3]) For ρ^0 , $\rho^1 \in \mathcal{P}_+$, $\mathcal{W}_{\mathcal{C}} \colon \mathcal{P}_+ \times \mathcal{P}_+ \to \mathbb{R}$

$$\mathcal{W}_{\mathcal{C}}(\rho^{0},\rho^{1})^{2} := \inf_{(\rho_{t},\psi_{t})} \int_{0}^{1} \int_{\Omega} \langle \nabla \psi_{t}, \mathcal{C}(\rho_{t}) \nabla \psi_{t} \rangle \ \rho_{t} \, \mathrm{d}x$$

subject to $\partial_{t}\rho_{t} + \nabla \cdot (\rho_{t}\mathcal{C}(\rho_{t}) \nabla \psi_{t}) = 0, \ \rho_{0} = \rho^{0}, \ \rho_{1} = \rho^{1},$

・ロト・四ト・モート ヨー うへの